Topographical estimation of visual population receptive fields by FMRI.
نویسندگان
چکیده
Visual cortex is retinotopically organized so that neighboring populations of cells map to neighboring parts of the visual field. Functional magnetic resonance imaging allows us to estimate voxel-based population receptive fields (pRF), i.e., the part of the visual field that activates the cells within each voxel. Prior, direct, pRF estimation methods(1) suffer from certain limitations: 1) the pRF model is chosen a-priori and may not fully capture the actual pRF shape, and 2) pRF centers are prone to mislocalization near the border of the stimulus space. Here a new topographical pRF estimation method(2) is proposed that largely circumvents these limitations. A linear model is used to predict the Blood Oxygen Level-Dependent (BOLD) signal by convolving the linear response of the pRF to the visual stimulus with the canonical hemodynamic response function. PRF topography is represented as a weight vector whose components represent the strength of the aggregate response of voxel neurons to stimuli presented at different visual field locations. The resulting linear equations can be solved for the pRF weight vector using ridge regression(3), yielding the pRF topography. A pRF model that is matched to the estimated topography can then be chosen post-hoc, thereby improving the estimates of pRF parameters such as pRF-center location, pRF orientation, size, etc. Having the pRF topography available also allows the visual verification of pRF parameter estimates allowing the extraction of various pRF properties without having to make a-priori assumptions about the pRF structure. This approach promises to be particularly useful for investigating the pRF organization of patients with disorders of the visual system.
منابع مشابه
Evaluating Population Receptive Field Estimation Frameworks in Terms of Robustness and Reproducibility
Within vision research retinotopic mapping and the more general receptive field estimation approach constitute not only an active field of research in itself but also underlie a plethora of interesting applications. This necessitates not only good estimation of population receptive fields (pRFs) but also that these receptive fields are consistent across time rather than dynamically changing. It...
متن کاملPosition Information Encoded by Population Activity in Hierarchical Visual Areas
Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we eva...
متن کاملReceptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملComputational neuroimaging and population receptive fields.
Functional magnetic resonance imaging (fMRI) noninvasively measures human brain activity at millimeter resolution. Scientists use different approaches to take advantage of the remarkable opportunities presented by fMRI. Here, we describe progress using the computational neuroimaging approach in human visual cortex, which aims to build models that predict the neural responses from the stimulus a...
متن کاملPreserved position information in high-level visual cortex with large receptive fields
CC-BY 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was. YK and PS designed the study. PS and TH performed experiments. KM and PS performed analysis. KM, TH, and YK wrote the manuscript.. CC-BY 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyrig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 96 شماره
صفحات -
تاریخ انتشار 2015